پرسش و پاسخ درباره محصولات مین ول

نکات مربوط در انتخاب یک منبع تغذیه سوئیچینگ

  1. برای افزایش قابلیت اطمینان درانتخاب یک منبع تغذیه سوئچینگ پیشنهاد می شود که 30 درصد بالاتر از توان مصرفی مورد نیاز در نظر گرفته شود. برای مثال اگر سیستم نیاز به 100 وات توان مصرفی داشته باشد، منبع تغذیه ای با حداقل توان 130 وات تهیه شود. با این کار، قابلیت اطمینان منبع تغذیه در سیستم موجود، بطور قابل ملاحظه ای بالا می رود.
  2. یکی دیگر از مواردی که باید به آن توجه شود دمای محیطی است که منبع تغذیه در آنجا نصب می شود. به همین منظور باید دستگاههای اطراف منبع تغذیه که تلفات گرمایی دارند نیز مد نظر قرار گیرند. اگر منبع تغذیه در محیطی با دمای بالا کار کند، توان خروجی آن افت می کند. نمودار تغییرات توان خروجی بر حسب دمای محیط در دیتاشیت منابع تغذیه آورده شده است.
  3. انتخاب ویژگی های عملکردی منبع تغذیه بر اساس کاربرد مورد نیاز:
  • قابلیت های حفاظتی مانند حفاظت در برابر اضافه ولتاژ (OVP) ، حفاظت در برابر دمای بالا (OTP)، حفاظت در برابر اضافه بار (OLP) و … .
  • قابلیت های کاربردی مانند قابلیت Signaling (Power Good, Power Fail) ، Remote Control، Remote Sensing و … .
  • کاربردهای خاص مانند اصلاح ضریب توان (PFC) ، منبع تغذیه بدون وقفه (UPS) .
  1. مدل انتخابی از نظر استاندارد ایمنی و سازگازی الکترومغناطیسی (EMC) نیز بایستی مد نظر قرار بگیرد.

آیا منابع تغذیه MEAN WELL می توانند در فرکانس های بین 45 هرتز تا 440 هرتز کار کنند؟ اگر جواب مثبت است در فرکانس های مختلف چه اتفاقی رخ می دهد؟

منابع تغذیه MEAN WELL  میتوانند در این رنج فرکانسی کار کنند. اما اگر فرکانس کاری خیلی پایین باشد راندمان هم کاهش می یابد. برای مثال زمانی که منبع تغذیه از نوع SP-200-24 تحت ولتاژ 230 ولت و بار مجاز کار می کند اگر فرکانس کاری 60 هرتز باشد راندمان در حدود 84 درصد خواهد بود، ولی اگر فرکانس 50 هرتز باشد راندمان مقدار 3/83 درصد خواهد شد. اگر فرکانس کاری خیلی بالا باشد، مقدار ضریب توان در منابع تغذیه دارای قابلیت اصلاح ضریب توان کاهش می یابدو این موضوع باعث افزایش جریان نشتی نیز خواهد شد. برای مثال زمانی که یک منبع تغذیه SP-200-24 تحت ولتاژ 230 ولت و بار مجاز کار می کند، اگر فرکانس ورودی 60 هرتز و ضریب توان 93/0 باشد مقدار جریان نشتی در حدود 7/0 میلی آمپر خواهد بود. ولی اگر فرکانس ورودی به مقدار 440 هرتز افزایش یابد مقدار ضریب توان به 75/0 کاهش یافته و جریان نشتی به مقدار 3/4 میلی آمپر افزایش می یابد.

مقدار "حداقل بار مورد نیاز" چیست و چطور میتوان مقدار آن را از دیتاشیت منابع تغذیه استخراج کرد؟

چندین مقدار مختلف “حداقل بار مورد نیاز” در منابع تغذیه دارای چندین خروجی MEAN WELL تعریف می شود. لازم است قبل از اتصال بار به منبع تغذیه، مشخصات منبع تغذیه ازدیتاشیت خوانده شود. به منظور اینکه منبع تغذیه صحیح کار کند، یک مقدار حداقل بار برای هر خروجی نیاز است، در غیر این صورت سطح ولتاژ خروجی ناپایدار و یا دارای نوسان خواهد بود. بایستی در دیتاشیت منابع تغذیه به عبارت “Current range” مراجعه شود، برای مثال جدولی در زیر آورده شده است. در جدول زیر کانال 1 نیازمند حداقل بار مورد نیاز2 آمپر، در کانال دوم حداقل بار مورد نیاز 5/0 آمپر، در کانال سوم حداقل بار مورد نیاز 1/0 آمپر و در کانال چهارم نیازی به حداقل بار نیست.

CH4 CH3 CH2 CH1 OUTPUT NUMBER
-12V -5V 12V 5V DC VOLTAGE
0.5A 1A 4.5A 11A RATED CURRENT
0~1A 0.1~1A 0.5~4.5A 2~12A CURRENT RANGE

چرا منبع تغذیه در هنگام کار خاموش می شود و آیا بعد از خاموش شدن می توان منبع تغذیه را دوباره راه-اندازی کرد؟

به طور معمول در دو حالت ممکن است منبع تغذیه در حین کار خاموش شود. حالت اول زمانی است که حفاظت در برابر اضافه بار اتفاق می افتد (OLP). برای مقابله با این وضعیت پیشنهاد می شود نرخ توان خروجی افزایش یابد یا مقدار عددی حفاظت در برابر اضافه بار اصلاح گردد. حالت دوم زمانی است که حفاظت در برابر دمای بالا اتفاق می افتد (OTP). این حالت هنگامی اتفاق می افتد که دمای داخلی منبع تغذیه از مقدار از پیش تعیین شده بیشتر می شود. همه این موارد وقتی اتفاق می افتد که منبع تغذیه وارد مد حفاظتی می شود و خاموشی رخ می دهد. با برگشتن شرایط به بازه مجاز کاری، منبع تغذیه به حالت نرمال عمل می کند.

مکانیزم کنترلی مربوط به فن های منابع تغذیه به چه صورت می باشد؟

فن های خنک ساز طول عمر کوتاه تری نسبت به سایر اجزای سازنده منبع تغذیه دارند. با تغییر نحوه عملکرد فن ها میتوان ساعت های کارکرد منابع تغذیه را افزایش داد. رایجترین منطق کنترلی در ادامه توضیح داده می شود:

  • کنترل دما : اگر دمای داخلی یک منبع تغذیه که بوسیله یک سنسور دما اندازه گیری می شود، بالاتر از مقدار آستانه تعیین شده (Threshold) باشد، فن با سرعت ماکزییم شروع به خنک کردن منبع تغذیه می کند. حال اگر دمای داخلی منبع تغذیه کمتر از مقدار آستانه تعیین شده باشد، فن متوقف شده یا با نصف سرعت ماکزیمم شروع به خنک کاری منبع تغذیه خواهد نمود. علاوه بر این، فن های خنک ساز در برخی منابع تغذیه بوسیله یک الگوریتم غیرخطی کنترل می شوند، بصورتی که می توانند با توجه به دمای داخل منبع تغذیه، سرعتهای متفاوتی داشته باشند.
  • کنترل بار: اگر میزان بار متصل به منبع تغذیه بیش از مقدار آستانه تغیین شده باشد، فن با سرعت ماکزیمم شروع به کار خواهد کرد و اگر میزان بار کمتر از مقدار آستانه تعیین شده باشد، فن متوقف شده یا با نصف سرعت ماکزیمم شروع به کار خواهد کرد.

جریان هجومی چیست؟

در منابع تغذیه با توجه به نوع منبع تغذیه و طراحی آن، جریان مصرفی هنگام روشن شدن منبع تغذیه میتواند بین 20 الی 60 آمپر باشد. این جریان لحظه ای در هنگام راه اندازی، جریان هجومی یا Inrush Current نامیده می شود، که به صورت یک جریان بزرگ در یک  لحظه هنگام روشن شدن منبع تغذیه کشیده می شود. اگرچه ممکن است این جریان به منبع تغذیه آسیب نرساند، اما پیشنهاد می شود که به هیچ وجه منبع تغذیه در یک بازه زمانی کوتاه به دفعات زیاد خاموش و روشن نشود. علاوه بر این، اگر چندین منبع تغذیه در سیستم وجود دارد که قرار است با یکدیگر روشن شوند، این اتفاق چون سبب جریان هجومی بالایی می شود، ممکن است منبع برق را به حالت خاموش ببرد. بنابراین پیشنهاد می شود که منابع تغذیه یکی پس از دیگری روشن شده یا عمل روشن و خاموش شدن انها از طریق ویژگی Remote Control موجود بر روی منابع تغذیه انجام شود.

PFC یا اصلاح ضریب قدرت چیست؟

اصلاح ضریب توان یا PFC به صورت نسبت توان حقیقی به توان ظاهری  تعریف می شود. ضریب توان در مدل های بدون PFC بین 0.4 تا 0.6 می باشد. در مدل های PFC دار مقدار ضریب توان می تواند حتی بالاتراز مقدار 0.95 نیز بشود. فرمول های محاسباتی به صورت زیر است.

توان ظاهری = ولتاژ ورودی x جریان ورودی

توان حقیقی = ولتاژ ورودی x جریان ورودی x ضریب توان

نیروگاه های برق به منظور فراهم سازی شرایط مناسب مصرف در یک منطقه و ایجاد شرایط پایدار، باید مقداری بالاتر از توان ظاهری مورد نیاز تولید کنند. مقدار واقعی مصرف برابر با توان اکتیو می باشد، بنابراین هنگامی که ضریب توان برابر 0.5 باشد نیروگاه برق باید توان ظاهری به اندازه دو برابر توان حقیقی برق تولید کند. ولی اگر ضریب توان مقدار 0.95 در نظر گرفته شود نیروگاه  برق فقط با تامین توان ظاهری به مقدار 1.06 برابر توان حقیقی می تواند پاسخگوی مصرف کنندگان باشد. بنابراین با استفاده از اصلاح ضریب توان می توان به طور موثری در ذخیره انرژی صرفه جویی کرد.

توپولوژی PFC فعال به دو صورت یک مرحله ای و دو مرحله ای انجام می شود که تفاوت آنها در جدول زیر آمده است.

محدودیت ها معایب مزایا PFC topology
·        مقدارHold up time برابرصفراست. بنابراین مقدار خروجی منبع تغذیه به صورت مستقیم از   ورودی AC تاثیر می پذیرد.

·        جریان نوسان بزرگ بر طول عمر LEDها موثر است.

·        نسبت به تغییرات بار دارای پاسخ دینامیکی پایین هستند.

·        نوسان بزرگتر

·        کنترل فیدبک پیچیده

·        هزینه پایین

·        شماتیک ساده

·        راندمان بالا برای کاربردهای وات پایین

Single-stage
active PFC
·        برای همه نوع کاربرد مناسبند. ·        هزینه بالاتر

·        شماتیک پیچیده تر

·        هزینه بالاتر

·        ضریب توان بالاتر

·        کنترل فیدبک آسان

·        تطبیق بالاتر با تغییرات بار

Two-stage active PFC

تفاوت بین –V و COM که در خروجی منابع تغذیه نشان داده می شوند، در چیست؟

COM(COMMON) به معنای زمین مشترک می باشد. در مدلهای تک خروجی، قطب مثبت (+V) و قطب منفی (-V) می باشد. در مدلهای با بیش از یک خروجی، قطب مثبت (+V1,+V2) و قطب منفی (COM) می باشد.

در کاتالوگ محصولات MEAN WELL منظور از ورودی به صورت AC وDC چیست و انواع مختلف آن به چه صورت است؟

براساس طراحی های مختلف مدارات منابع تغذیه MEAN WELL ورودی می تواند به سه صورت زیر باشد:

a.85~264VAC;120~370VDC
b.176~264VAC;250~370VDC
c.85~132VAC/176~264VAC by Switch; 250~370VDC

در مدل های a,b  منبع تغذیه می تواند بدون هیچ گونه ایرادی با هر دو ورودی AC  وDC کار کند. بعضی مدل ها از منابع تغذیه نیاز دارند که اتصال ورودی قطب ها به صورت صحیح انجام شود، یعنی قطب مثبت به پایه AC/L و قطب منفی به پایه AC/N   متصل شود. در بعضی دیگر از منابع تغذیه اتصال قطب ها باید به صورت معکوس انجام شود، یعنی قطب مثبت به پایه  AC/N  و قطب منفی به پایه AC/L متصل گردد. اگر به هر دلیلی پایه های ورودی به صورت نادرست متصل شود، منبع تغذیه خراب نمی شود، با تعویض پایه های ورودی منبع تغذیه شروع به کار می کند.

در مدل c باید دقت شود که سوئیچ تغییر مقدار ولتاژ ورودی به درستی انتخاب شود (115/230V). وقتی سوئیچ بر روی 115 ولت تنظیم شده و ولتاژ ورودی 230 ولت باشد، منبع تغذیه دچار صدمه می شود.

MTBF چیست؟ و آیا با Life cycle فرق دارد؟

MTBF (Mean Time Between Failure) و Life Cycle هر دو نمایانگر میزان قابلیت اطمینان است. MTBF می تواند به دو روش محاسبه شود، روش اول Part Count  و روش دوم  Stress analysis.

آیین نامه MIL-HDBK-217F  به هر دو موضوع بالا پرداخته و TELCORDIA SR/TR-332(Bellcore) برای محاسبه MTBF بکار می رود. MIL-HDBK-217F مربوط به استاندارد ارتش آمریکا و TELCORDIA SR/TR-332(Bellcore) از مقررات تجاری می باشد. MEAN WELL  از استاندارد MIL-HDBK-217F (آنالیز استرس) به عنوان هسته اصلی MTBF استفاده می کند. مفهوم اصلی MTBF به این صورت بیان می شود که بعد ازاستفاده مستمر از منبع تغذیه برای یک مدت مشخص، متوسط زمانی که احتمال عملکرد صحیح منبع تغذیه به پایین تر از % 8/36  (e-1=0.368 ) می رسد مقدار MTBF را نشان می دهد. د رحال حاضر MEAN WELL براساس استاندارد MIL-HDBK-217F قابلیت اطمینان مورد نیاز را با روش آنالیز استرس (البته به استثنای فن ها) پیش بینی می کند. Life Cycle با افزایش دمای خازن های الکترولیتی به اندازه ماکزیمم دمای کاری آنها، به تخمین عمر منابع تغذیه می پردازد. برای مثال در مدل RSP-750-12 مقدار MTBF=109.1k hours در 25 درجه سانتی گراد است. و برای خازن الکترولیتی C110 مقدار Life Cycle=213k hours در (Ta=50℃) است.

DMTBF (Demonstration Mean Time Between Failure) روشی برای ارزیابی MTBF می باشد. برای محاسبه MTBF از فرمول های زیر استفاده می شود:

که در فرمول های بالا:

MTBF:Life time determine by specification.
X2:Can be found in chi-square distribution
N:Number of sampling
AF:Acceleration factor, which can be derived from acceleration factor equation.
Ae=0.6
K(Boltzmann Constant)=(eV/k)
T1:Rated temperature of specification. Note: Kelvin will be the unit use for calculation
T2:The temperature that is used in the meaning of acceleration, and the chosen temperature could not result in physical change in materials. Note: Kelvin will be the unit use for  calculation.

سیگنال های Power Good و Power Fail چیست و چگونه استفاده می شود؟

بعضی از منابع تغذیه سیگنالی تحت عنوان Power Good در هنگام روشن شدن و Power Fail در هنگام خاموش شدن ایجاد می کنند. این سیگنال ها برای کنترل و مانیتورینگ استفاده می شود.

Power Good

طبق نمودار زیر، زمانی که ولتاژ خروجی یک منبع تغذیه به 90% ولتاژ نامی می رسد، یک سیگنال TTL ( 5 ولت) در بازه زمانی بین 10تا500 میلی ثانیه ارسال میگردد.

Power Fail

طبق نمودار زیر، یک میلی ثانیه قبل از اینکه ولتاژ خروجی به زیر 90% ولتاژ نامی برسد، سیگنال Power Good خاموش می شود.

در یک اینورتر مدل TN-1500 چرا هنگامی که ورودی اصلی اعمال میشود LED مربوط به IN AC روشن نمی شود؟

در کشورهای مختلف سطح ولتاژ متفاوت است، خروجی اینورتر TN-1500 در ورژن 110V AC می تواند به صورت 100/110/115/120VAC و به همین ترتیب خروجی اینورتر در ورژن  220VAC می تواند به صورت 200/220/230/240VAC متغیر باشد. زمانی که اینورتر در مد UPS تنظیم شده باشد و ولتاژ اصلی، نوسانی بالاتر از 5 درصد ولتاژ خروجی تنظیم شده، داشته باشد، اینورتر از روی مد منبع تغذیه به مد باتری جابه جا می شود تا زمانی که خروجی ولتاژ AC به مقدار صحیح باز گردد. در این حالت نمایشگر AC IN در پنل جلوی اینورتر خاموش می شود.

انواع حفاظت از اضافه بار و اضافه جریان (Overload/Overcurrent)به چه صورت است؟

هنگامی که جریان کشیده شده بیش از نرخ تعیین شده در منبع تغذیه باشد، مدار حفاظتی برای مقابله با Overload/Overcurrent فعال خواهد شد.

محافظت از Overload/Overcurrent به انواع زیر تقسیم بندی می شود:

  • FOLDBACK CURRENT LIMITING

در این حالت جریان خروجی به مقدار 20 درصد از نرخ تعیین شده کاهش می­یابد. (شکل زیر، منحنی a)

  • CONSTANT CURRENT LIMITING

در این حالت جریان خروجی در یک سطح ثابت و در محدوده مشخص باقی می ماند تا وقتی که ولتاژ خروجی به پایین ترین سطح آن افت کند. (شکل زیر، منحنی b )

  • OVER POWER LIMITING

در این حالت توان خروجی ثابت باقی می ماند. هنگامی که بار خروجی افزایش می یابد، ولتاژ خروجی به همان نسبت کاهش می یابد. (شکل زیر، منحنی c)

  • HICCUP CURRENT LIMITING

در این حالت با فعال شدن محافظت، ولتاژ و جریان خروجی مکررا به صورت پالسی روشن و خاموش می شوند. با از بین رفتن شرایط خطا این بخش به صورت خودکار ترمیم می شود.

  • SHUT OFF

در این حالت هنگام افزایش بار به بیش از نرخ حفاظتی، ولتاژ و جریان خروجی قطع می شوند.

توجه: مد حفاظتی در بعضی از محصولات شامل ترکیبی از موارد اشاره شده در بالاست، همچون constant current limiting + shut down.

روش های  بازیابی

  • Auto Recovery: منبع تغذیه به صورت خودکار با از بین رفتن شرایط خطا، بازیابی می گردد.
  • Re-power on: بعد از وقوع خطا در منبع تغذیه ، باید یکبار به صورت دستی برق ورودی آن قطع و وصل شود تا به حالت نرمال بازگردد.

توجه: نباید منبع تغذیه را در شرایط اضافه جریان یا اتصال کوتاه در مدت زمان طولانی بکار برد، زیرا باعث کوتاه شدن طول عمر و صدمه دیدن آن می شود.

ریپل و نویز چیست و چگونه اندازه گیری می شود؟

یک پدیده ناخواسته است که به صورت یک سیگنال متناوب با دامنه کوچک بر روی خروجی DC ایجاد شده که از ورودی AC منشا می­گیرد. شکل موج به صورت زیر نشان داده می شود:

در شکل موج نشان داده شده دو جز وجود دارد که یکی ریپل و دیگری نویز می باشد. ریپل در هنگام یکسوسازی (Rectification ) موج سینوسی ایجاد می شود که فرکانسی معادل دو برابر فرکانس ورودی را داراست. نویز در فرکانسهای بالا ایجاد می شود که در واقع هنگام سوچینگ با فرکانس بالا ایجاد می شود. برای اندازه گیری نویز فرکانس بالا، یک اسیلوسکوپ با پهنای باند 20مگاهرتز، یک پروب با کمترین سیم اتصال زمین و یک خازن 1/0 میکروفاراد که بصورت موازی با خروجی بسته شده است، نیاز می باشد.

Withstand Voltage یا ولتاژ قابل تحمل چیست؟ و چطور می توان آن را اندازه گرفت؟

با استفاده از تست Hi-Pot  یا تست Electric Strength محاسبه می شود. قبل از انجام تست ورودی و خروجی همچون شکل زیر اتصال کوتاه می شود. این تست تحت شرایط حلقه بسته خاص همچون I/P-O/P, I/P-FG  و  O/P-FGدر مدت زمان یک دقیقه انجام می شود. ( مقدار عادی جریان نشتی در تست AC برابر 25 میلی آمپر است)

  • تست Hi-Pot راهی برای اطمینان از ایزوله بودن بین اولیه و ثانویه است که اگر این تست به درستی انجام شود، هنگامی که ولتاژ بزرگی بین ورودی و خروجی برقرار شود از آسیب به منبع تغذیه جلوگیری می شود. ولتاژ تست باید به آرامی از صفر ولت تا سطح معینی بالا رود و در این سطح ولتاژ به مدت 60 ثانیه با زمان صعود بالاتر از یک ثانیه باقی بماند. در تولیدات با حجم بالا، زمان تست به یک ثانیه کاهش می یابد. اگر هنگام تست ولتاژ، جریان نشتی در موادی که جهت ایزوله سازی بکار رفته به سرعت افزایش یابد این موضوع  بیانگر این است که ایزوله سازی بدرستی انجام نشده است(شکست عایقی رخ داده است). پدیده اثر کرونا و یا تخلیه الکتریکی گذرا نمی تواند علت شکست تست به حساب بیاید.
  • زمانی که تست ولتاژ AC انجام می شود، علت اصلی جریان نشتی خازن های Y هستند. یک خازن 7nF می تواند باعث 5 میلی آمپر جریان نشتی شود. بر اساس آیین نامه UL-554 خازن های Y برای تست Hi-Pot باید خارج شوند که این موضوع در تولیدات انبوه امکان پذیر نیست. تنها راه حل افزایش جریان نشتی، معمولا به مقدار 25 میلی آمپر درهنگام تست می باشد. در حال حاضر شاخص نشتی جریان در آیین نامه های ایمنی تعریف نشده است.
  • بر طبق آیین نامه IEC60950-1 در جاهایی که اولیه و ثانویه توسط پل خازنی به هم متصل شده است می توان از ولتاژ تست DC برای حل مشکل جریان نشتی استفاده کرد.

چطور یک منبع تغذیه مناسب با کارکرد شارژر انتخاب کنیم؟

MEAN WELL برای کاربرد شارژر باتری سری­های ENC, HEP-600C, GC, PA, PB, RPB  وRCB را معرفی کرده است (30~360W). اگر این مدل ها  نتوانند همه نیازهای مشتریان را برآورده سازند، یک جایگزین برای این هدف وجود دارد. منابع تغذیه با قابلیت محدود کننده جریان “constant current limiting” که می توانند حفاظت از اضافه بار را فراهم سازند، پیشنهاد می شود. جریان شارژکردن، در باتری با درصدهای شارژ مختلف، متفاوت است، به همین دلیل احتمال رخداد حفاظت از اضافه بار در حالت های شارژ پایین باتری بسیار محتمل است. در باتری­هایی با شارژ پایین، حفاظت از اضافه بار به صورت قطع و وصلی و یا قطع کامل خروجی منبع تغذیه باعث جلوگیری از شارژ شدن باتری می شود. بکارگیری منبع تغذیه به عنوان شارژر از دیدگاه کاربرد اضافه بار بررسی و اصلاحاتی در آن انجام شده است.

کاربرد منابع تغذیه که به صورت سری متصل شده اند چیست؟

دو کاربرد در اتصال منابع تغذیه به صورت سری وجود دارد. کاربرد اول حالتی که نیاز به داشتن ولتاژ منفی و مثبت است و کاربرد دوم زمانی که نیاز به ولتاژ خروجی بزرگتری می باشد. دو کاربرد بیان شده در ادامه توضیح داده می شود:

ولتاژ مثبت و منفی

افزایش ولتاژ خروجی (جریان خروجی تغییر نمی کند). در این حالت اگر دیود مسدود کننده جریان بازگشتی در منبع تغذیه وجود نداشت، باید برای جلوگیری از صدمه دیدن منبع تغذیه در هنگام استارت آن در خروجی منبع تغذیه از دیودهایی به شکل زیر استفاده شود. نرخ ولتاژ دیودهای خروجی باید بزرگتر از V1+V2 باشند. همچنین نرخ جریان گذرا از دیودها باید از جریان خروجی منبع تغذیه بیشتر باشد.

در ولتاژهای زیر 60 ولت و در توان های پایین تر از پانصد وات امکان اتصال مستقیم وجود دارد.

در چه زمانی نیاز است دو منبع تغذیه به صورت موازی بسته شود؟

در چه زمانی نیاز است دو منبع تغذیه به صورت موازی بسته شود؟

هنگامی که دو منبع تغذیه به صورت موازی بسته شود جریان خروجی حاصل افزایش می یابد، ازاین ترکیب می توان در جاهایی که نیاز به منبع تغذیه پشتیبان (Redundant) است استفاده می شود. باید توجه داشت تفاوت ولتاژ خروجی دو منبع تغذیه و امپدانس سیم­ها در حالت موازی بسیار اندک باشد.

  • ترمینال های P(LP/CS) همچون سری PSP  به هم متصل شود.(باید به روش موازی کردن در راهنمای منابع تغذیه مراجعه شود). باید قبل از اتصال ورودی  AC درحالت موازی ، ورودی و خروجی منابع تغذیه به هم متصل شوند. روش موازی کردن در شکل زیر آمده است. (بعضی از منابع تغذیه نیازمند وجود بار در خروجی بعد از موازی کردن هستند)

  • تفاوت ولتاژ خروجی در منابع تغذیه باید کمترین مقدار ممکن باشد، کمتر از 2/0 ولت پیشنهاد می شود.
  • منابع تغذیه باید ابتدا با سیم هایی با قطر مناسب و طول کوتاه موازی شوند سپس به بار متصل گردند.
  • بعد از موازی کردن مقدار ماکزیمم توان خروجی 90 درصد مقدار توان کل محاسبه شده است.
  • هنگامی که منابع تغذیه موازی می شوند، اگر بار کمتر از10 درصد بار محاسبه شده هر کدام از منابع تغذیه باشد، ممکن است نمایشگر LED یا سیگنال ها(Power Good、Pok、Alarm Signal) به درستی عمل نکنند.
  • برای اطمینان ازاینکه جریان بار در حالت موازی به صورت موثر تقسیم شود، پیشنهاد می شود بیش از 4-6 منبع تغذیه در یک زمان استفاده نشود.
  • در بعضی از مدل ها از سیگنال های حسگر ولتاژ +S,-S استفاده شده است تا نوسان در خروجی کاهش یابد.

چرا نمی توان منبع تغذیه را هنگامی که بارها به صورت موتوری، لامپ های روشنایی یا بار خازنی هستند، به آرامی راه¬اندازی کرد؟

هنگام روشن شدن منبع تغذیه متصل به موتورها، لامپ های روشنایی یا بارهای بسیار خازنی، یک تخلیه جریانی بزرگ در خروجی بوجود می آید، این عامل باعث جلوگیری از راه اندازی صحیح می گردد. برای رفع این مشکل منبع تغذیه با قابلیت حفاظت محدود کننده جریان ثابتconstant current limiting” ” پیشنهاد می شود.

اگر زمین خروجی (GND) و زمین بدنه (FG) در یک سیستم، یکسان باشند، آیا منابع تغذیه Mean Well می-توانند در چنین سیستمی استفاده شوند؟

بله، از آنجایی که محصولات Mean Well با در نظر گرفتن ایزولاسیون طراحی شده اند، مشکلی وجود ندارد که زمین خروجی (GND) و زمین بدنه (FG) در یک سیستم، یکسان باشند. اما EMI ممکن است با این پیکربندی تحت تاثیر قرار بگیرد.

هنگامی که منبع تغذیه کار می کند در آن مقداری جریان نشتی بوجود می آید. آیا وجود این جریان نشتی طبیعی است؟ و آیا این جریان نشتی به بدن انسان صدمه می رساند؟

بر مبنای نیاز به سازگاری الکترومغناطیسی(EMI)،  تعدادی خازن هایی به صورت Y بین فاز و نول و FG برای بهبود سازگاری الکترومغناطیسی قرار می گیرد. این خازن ها مقداری جریان نشتی بین فاز و نول و بدنه (که به صورت معمول زمین شده است) بوجود می آورند. برای مثال در استاندارد IEC-60950-1 مقدار جریان نشتی در ادوات IT باید کمتر از مقدار 5/3 میلی آمپر باشد تا ضرری برای بدن انسان نداشته باشد. اگر زمین کردن به درستی انجام شود مشکل جریان نشتی حل خواهد شد.

برای یک نیاز خاص، ایا امکان دارد که نویز فن را کاهش داد؟

نویز به طور مستقیم به فن درون منبع تغذیه ارتباط دارد. کاهش جریان هوا فن، قابلیت از بین بردن تلفات گرمایی را کاهش می دهد. این موضوع همچنین قابلیت اطمینان محصولات را تحت تاثیر قرار می دهد. همچنین حداقل جریان هوای فن توسط Safety Organization تعیین شده است و ملاحظات Safety در هنگام استفاده از فن جدید مورد نیاز خواهد بود. بطور کلی، زمانی که یک منبع تغذیه مناسب انتخاب می شود، اگر توان کمتر از 150 وات باشد، وجود فن ضرورتی ندارد. اگر توان بین 150 الی 500 وات باشد، نمونه های فن دار و بدون فن موجود است. در نهایت برای توان بالای 500 وات، یک فن مورد نیاز خواهد بود.

در هنگام نصب یک منبع تغذیه در جهت افقی یا عمودی باید به چه نکاتی توجه داشت؟

اکثر منابع تغذیه کوچک و بدون فن غالبا به صورت افقی نصب می شوند. اگر به علت محدودیت های مکانیکی نیاز به نصب به صورت عمودی باشد، باید مقدار کاهش خروجی منبع تغذیه به منظور جلوگیری از مشکلات افزایش دما بررسی شود. منحنی کاهش خروجی منبع تغذیه بر حسب دما در دیتاشیت منابع تغذیه وجود دارد. در منابع تغذیه فن دار و یا دارای سیستم خنک کننده، نصب به صورت افقی یا عمودی مشکلی ایجاد نمی کند. برای مثال در مدل SP-150 منحنی کاهش مقدار خروجی برحسب افزایش دما در حالت نصب عمودی نسبت به نصب افقی پنج سلسیوس فرق دارد. مقدار وات خروجی در حالت وجود فن بیست درصد بالاتر از حالت بدون فن است.

چطور یک قطع کننده مدار یا یک فیوز مناسب برای منابع تغذیه MEANWELL انتخاب می شود؟

هنگام روشن شدن منبع تغذیه در قسمت ورودی آن، جریان هجومی گذرا ایجاد می شود. بر اساس طراحی منبع تغذیه جریان هجومی معمولا بین 20 تا 70 آمپر می باشد که به مدت 2/1 تا 1 سیکل از ورودی AC  طول می کشد. (برای مثال 120/1 تا 60/1 ثانیه برای یک منبع AC 60 هرتز). هر قطع کننده یا فیوز دارای منحنی مشخصه (V-I) مخصوص به خود است. کاربر باید یک قطع کننده یا فیوز با جریان نامی بالاتر از جریان ورودی  منبع تغذیه را انتخاب کرده و ارزیابی کند که منحنی V-I  قطع کننده یا فیوز می تواند با جریان هجومی منبع تغذیه در طول یک سیکل از ورودی AC مقابله کند. (برای مثال 60/1 ثانیه)

آیا شارژرهای MEAN WELL می توانند باتری های لیتیومی را شارژ کنند یا نوع دیگری از باتری باید جایگزین شود؟

همه شارژرهای  MEAN WELL برای باتری های  lead-acid طراحی شده اند. انواع دیگر باتری از قبیل لیتیومی دارای مشخصه شارژ و دشارژ مخصوص به خود هستند. شارژرهای MEAN WELL برای تطابق با پروفایل باتری های مختلف نیازمند اصلاحاتی هستند. برای داشتن شارژ اصلاح شده برای باتری خاص به نمایندگی های محصولات MEAN WELL مراجعه شود.

نکات مربوط به سیم¬های مورد استفاده بین منبع تغذیه و بار چیست؟

برای نصب یک منبع تغذیه در یک سیستم، نیاز به سیم هایی جهت اتصال منبع انرژی و بار وجود دارد. دو نکته ای که باید در انتخاب سیم ها در نظر گرفت، یکی میزان جریان است که اگر درست تعیین نشود، ممکن است باعث بالا رفتن دما یا حتی در حالت های بدتر باعث سوختن سیم شود. دوم مسئله افت ولتاژ است که در سمت بار، به خاطر مقاومت سیم ها اتفاق می افتد. اگر افت ولتاژ زیاد باشد، ولتاژ مورد نیاز برای راه اندازی بار تامین نمی گردد. با مراجعه به جدول زیر می توان بر اساس طراحی سیستم، سیم های مناسب را انتخاب نمود.

چطور می توان یک آداپتور با دوشاخه AC مناسب برای کشورهای مختلف انتخاب نمود؟

یک آداپتور برای تامین برق تجهیز باید به پریز برق متصل شود،  با مراجعه به مشخصات آداپتور می توان نوع دوشاخه مورد نیاز برای اتصال به پریز برق را تعیین نمود. کشورهای مختلف دارای سوکت های AC و ولتاژ های مختلف هستند در جدول زیر اطلاعاتی در مورد دوشاخه های AC مختلف وجود دارد.

نکاتی که قبل از استفاده از Remote Sensing Function باید بدانید عبارتند از:

مورد اول اینکه باید از سیم های به هم پیچیده(twisted) برای اتصال پایه +S به قطب مثبت  و پایه –S به قطب منفی درخروجی و انتهای خط هم چون شکل زیر استفاده کرد. همچنین باید این سیم ها را به دور از کابل های AC وکابل های خروجی برای جلوگیری نویزپذیری قرار داد.

اضافه کردن خازن هایی در قسمت انتهایی خروجی، جایی که سیم های حسگر به یک بار دینامیکی متصل شده اند (فرکانس بالای یک کیلوهرتز). علت این کار کاهش نویز و تشخیص صحیح ولتاژ توسط سیم های حسگر می باشد. یک خازن مناسب باید ویژگی های زیر را داشته باشد:

  • نرخ نوسان جریان آن 2/0 برابر بزرگتر از مقدار جریان خروجی باشد.
  • ولتاژ آن بزرگتر از مقدار ولتاژ خروجی باشد.

آیا هنگامی که منحنی شارژ از پیش تعریف شده در شارژرها، پاسخگوی نیاز ما نیست، امکان درست کردن منحنی شارژ دلخواه در شارژرهای هوشمند MEANWELL وجود دارد؟ (فایل حاوی ویدئو آموزشی می باشد)

بله. منحنی های شارژ در شارژرهای هوشمند همچون سری  ENC وRPB می توانند با استفاده از برنامه ریز SBP-001  تنظیم شوند. SBP-001 با فراهم کردن نرم افزاری همراه با اتصالاتی بین شارژر و خودش امکان برنامه ریزی منحنی های شارژ را برای کاربر فراهم می سازد.

توابع قابل تنظیم عبارتند از:

پارامترهای شارژر: مقادیر جریان ثابت (CC)، ولتاژ ثابت (CV)، ولتاژ Float (FV) و جریان Tapper (TC) قابل تنظیم است.

جبران سازی دمای باتری: جبران سازی ولتاژهای مختلف شارژ شدن باتری در دماهای مختلف فراهم می شود.

تنظیمات Timeout : مقدار Timeout در مراحل مختلف شارژ کاملا قابل برنامه ریزی است تا با روشن و خاموش کردن به موقع شارژر از Over charge باتری جلوگیری کرد.

فایل آموزشی درباره جزئیات این موضوع در لینک زیر آمده است:

http://www.meanwell.com.tw/webapp/product/search.aspx?prod=SBP001&pdf=U0JQLUMucGRm&a=4

ویدئوپیاده سازی مثالی در مدل ENC-120 در زیر آورده شده است.

چرا ولتاژ ورودی در مشخصات منبع تغذیه مثلا مقدار 88~264 ولت است ولی بر روی برچسب منبع تغذیه مقدار 100~240 ولت نوشته می شود؟

در طول فرایند تایید ایمنی، از استانداردهای سخت گیرانه تری که درصدی از مقدار ولتاژ ورودی تست شده می باشد، بر روی برچسب منابع تغذیه استفاده می شود (در استاندارد IEC60950 از +6 تا -10 درصد استفاده می شود). بنابراین بازه ولتاژ در مشخصات منبع تغذیه وسیع تر است. بر روی برچسب محصولات منابع تغذیه بازه کوچکتری نوشته می شود تا این اطمینان حاصل شود که کاربر ولتاژ ورودی را در بازه صحیح وارد می کند و قوانین ایمنی به صورت کامل محقق می شود.

آیا محصولات MEANWELL که برچسب CE بر روی آنها وجود دارد بعد از نصب در محیط کار سازگاری الکترومغناطیسی (EMC) را برآورده می سازند؟

نمی توان صد در صد ضمانت کرد که در سیستم نهایی سازگاری الکترومغناطیسی وجود داشته باشد. مکان سیم کشی و نحوه زمین کردن منبع تغذیه در سیستم بر روی EMC موثر است. حتی با وجود استفاده از منابع تغذیه یکسان در محیط ها و کاربردهای مختلف، نتایج متفاوتی ممکن است رخ دهد. نتایج آزمایش های انجام شده در این مورد در گزارش های EMC وجود دارد.

چه تفاوت هایی بین استاندارد ایمنی (EN60950-1) و نوع پزشکی آن (EN60601) می باشد؟

طبق استاندارد ایمنی (EN60950-1) از نوع class I مقدار جریان نشتی نباید از 5/3 میلی آمپر تجاوز کند. در استاندارد ایمنی (EN60601)  حداکثر مقدار جریان نشتی 3/0 میلی آمپر است. شاخص های دیگر نظیر فاصله ایمن، تعداد فیوزها در این دو استاندارد متفاوت است. دو استاندارد به صورت کامل در جدول زیر مقایسه شده اند.

Class 2, Class II و LPS معرف چه چیزی هستند؟ تفاوت بین Class I و Class II در چیست؟

Class I: تجهیزاتی که در آنها برای محافظت در برابر شوک الکتریکی از عایق بندی ابتدایی استفاده شده و همچنین دارای خروجی برای اتصال به زمین هستند تا هنگامی که  به علت ولتاژهای خطرناک شکست عایقی رخ دهد از طریق زمین تخلیه الکتریکی صورت پذیرد. این بدین معنی است که منابع تغذیه Class I ترمینال یا پینی برای اتصال به زمین دارند.

Class II: تجهیزاتی که در آنها برای محافظت از شوک الکتریکی به عایق بندی های ابتدایی بسنده نشده و حفاظت های بیشتری در نظر گرفته شده است. محافظت هایی هم چون عایق بندی دو برابر یا تقویت شده که نیاز به زمین کردن را از بین برده است. این بدین معنی است که منابع تغذیه Class II نیازی به ترمینال یا پینی برای اتصال به زمین ندارند.

LPS: هنگامی که یک مدار الکتریکی با استفاده از یک منبع تغذیه محدود (LPS) تغذیه می شود جریان وتوان خروجی آن محدود می شود و همچنین احتمال اشتعال را هم به مقدار زیادی کاهش می دهد که این موضوع در استاندارد IEC60950-1 در جدول 2B بیان شده است. بنابراین فاصله ایمن و نرخ اشتعال پذیری قطعات به مقدار زیادی کاهش می یابد. به همین علت محفظه پلاستیکی این منابع تغذیه می تواند از نوع HB انتخاب شده تا هزینه ها کاهش یابد. تعریف محصولات ITE در استاندارد IEC/EN/UL60950-1 آمده است.